The following publications describe ALAMO, its methodology, and various related algorithms and applications:
- Cozad, A., N. V. Sahinidis and D. C. Miller, Learning surrogate models for simulation-based optimization, AIChE Journal, 60, 2211-2227, 2014.
- Miller, D. C., M. Syamlal, D. S. Mebane, C. B. Storlie, D. Bhattacharyya, N. V. Sahinidis, D. Agarwal, C. Tong, S. E. Zitney, A. Sarkar, X. Sun, S. Sundaresan, E. M. Ryan, D. Engel and C. Dale, Carbon capture simulation initiative: A case study in multi-scale modeling and new challenges, Annual Reviews of Chemical and Biomolecular Engineering, 5, 301-323, 2014.
- Cozad, A., N. V. Sahinidis and D. C. Miller, A combined first-principles and data-driven approach to model building, Computers & Chemical Engineering, 73, 116-127, 2015.
- Miller, D. C., D. Agarwal, D. Bhattacharyya, J. Boverhof, Y.-W. Cheah, Y. Chen, J. Eslick, J. Leek, J. Mae, P. Mahapatra, B. Ng, N. V. Sahinidis, C. Tong, S. E. Zitney, Innovative computational tools and models for the design, optimization and control of carbon capture processes, Computer Aided Chemical Engineering, 38, 2391-2396, 2016.
- Wilson, Z. T and N. V. Sahinidis, The ALAMO approach to machine learning, Computers & Chemical Engineering, 106, 785-795, 2017.
- Lindqvist, K., Z. T. Wilson, E. Næss and N. V. Sahinidis, A machine learning approach to correlation development applied to fin-tube bundle heat exchangers, Energies, 11(12), 3450, 2018.
- Cozad, A. and N. V. Sahinidis, A global MINLP approach to symbolic regression, Mathematical Programming, 170, 97-119, 2018.
- Wilson, Z. and N. V. Sahinidis, Automated learning of chemical reaction networks, Computers & Chemical Engineering, 127, 88-98, 2019.
- Sarwar, O., B. Sauk and N. V. Sahinidis, A discussion on practical considerations with sparse regression methodologies, Statistical Science, 35, 593-601, 2020.
- Sauk, B. and N. V. Sahinidis, Backward stepwise elimination: Approximation guarantee, a batched GPU algorithm, and empirical investigation, SN Computer Science, 2:396, 2021.
- Na, J., J. H. Bak and N. V. Sahinidis, Efficient Bayesian inference using adversarial machine learning and low-complexity surrogate models, Computers & Chemical Engineering, 151, 107322, 2021.
- Engle, M. and N. V. Sahinidis, Deterministic symbolic regression with derivative information: General methodology and application to equations of state, AIChE Journal, 68, e17457, 2022.
- Ma, K., N. V. Sahinidis, S. Amaran, R. Bindlish, S. J. Bury, D. Griffith and S. Rajagopalan, Data-driven strategies for optimization of integrated chemical plants, Computers and Chemical Engineering, 166, 107961, 2022.
- Ma, K., N. V. Sahinidis, R. Bindlish, S. J. Bury, R. Haghpanah and S. Rajagopalan, Data-driven strategies for extractive distillation unit optimization, Computers and Chemical Engineering, 167, 107970, 2022.
- Ma, K., L. M. Rios, A. Bhosekar, N. V. Sahinidis and S. Rajagopalan, Branch-and-Model: A derivative-free global optimization algorithm, Computational Optimization and Applications, 85, 337-367, 2023.